Acoustic Attack Against Accelerometers

Interesting acoustic attack against the MEMS accelerometers in devices like FitBits.

Millions of accelerometers reside inside smartphones, automobiles, medical devices, anti-theft devices, drones, IoT devices, and many other industrial and consumer applications. Our work investigates how analog acoustic injection attacks can damage the digital integrity of the capacitive MEMS accelerometer. Spoofing such sensors with intentional acoustic interference enables an out-of-spec pathway for attackers to deliver chosen digital values to microprocessors and embedded systems that blindly trust the unvalidated integrity of sensor outputs. Our contributions include (1) modeling the physics of malicious acoustic interference on MEMS accelerometers, (2) discovering the circuit-level security flaws that cause the vulnerabilities by measuring acoustic injection attacks on MEMS accelerometers as well as systems that employ on these sensors, and (3) two software-only defenses that mitigate many of the risks to the integrity of MEMS accelerometer outputs.

This is not that a big deal with things like FitBits, but as IoT devices get more autonomous — and start making decisions and then putting them into effect automatically — these vulnerabilities will become critical.

Academic paper.


Leave a Reply