ChatGPT Based AI Has A Long Way To Go

Artificial intelligence has been striving to be beneficial for humans for a prolonged period. Even at the release of Android 9 Pie, there was significant utilization of AI. With its latest model ChatGPT, OpenAI is achieving remarkable outcomes. ChatGPT is a cutting-edge language model developed by OpenAI that has the ability to generate human-like text. […]

The post ChatGPT Based AI Has A Long Way To Go first appeared on Internet Security Blog – Hackology.

January 21, 2023
Read More >>

AI and Political Lobbying

Launched just weeks ago, ChatGPT is already threatening to upend how we draft everyday communications like emails, college essays and myriad other forms of writing.

Created by the company OpenAI, ChatGPT is a chatbot that can automatically respond to written prompts in a manner that is sometimes eerily close to human.

But for all the consternation over the potential for humans to be replaced by machines in formats like poetry and sitcom scripts, a far greater threat looms: artificial intelligence replacing humans in the democratic processes—not through voting, but through lobbying…

January 18, 2023
Read More >>

Threats of Machine-Generated Text

With the release of ChatGPT, I’ve read many random articles about this or that threat from the technology. This paper is a good survey of the field: what the threats are, how we might detect machine-generated text, directions for future research. It’s a solid grounding amongst all of the hype.

Machine Generated Text: A Comprehensive Survey of Threat Models and Detection Methods

Abstract: Advances in natural language generation (NLG) have resulted in machine generated text that is increasingly difficult to distinguish from human authored text. Powerful open-source models are freely available, and user-friendly tools democratizing access to generative models are proliferating. The great potential of state-of-the-art NLG systems is tempered by the multitude of avenues for abuse. Detection of machine generated text is a key countermeasure for reducing abuse of NLG models, with significant technical challenges and numerous open problems. We provide a survey that includes both 1) an extensive analysis of threat models posed by contemporary NLG systems, and 2) the most complete review of machine generated text detection methods to date. This survey places machine generated text within its cybersecurity and social context, and provides strong guidance for future work addressing the most critical threat models, and ensuring detection systems themselves demonstrate trustworthiness through fairness, robustness, and accountability…

January 13, 2023
Read More >>