Rigged Poker Games

The Department of Justice has indicted thirty-one people over the high-tech rigging of high-stakes poker games.

In a typical legitimate poker game, a dealer uses a shuffling machine to shuffle the cards randomly before dealing them to all the players in a particular order. As set forth in the indictment, the rigged games used altered shuffling machines that contained hidden technology allowing the machines to read all the cards in the deck. Because the cards were always dealt in a particular order to the players at the table, the machines could determine which player would have the winning hand. This information was transmitted to an off-site member of the conspiracy, who then transmitted that information via cellphone back to a member of the conspiracy who was playing at the table, referred to as the “Quarterback” or “Driver.” The Quarterback then secretly signaled this information (usually by prearranged signals like touching certain chips or other items on the table) to other co-conspirators playing at the table, who were also participants in the scheme. Collectively, the Quarterback and other players in on the scheme (i.e., the cheating team) used this information to win poker games against unwitting victims, who sometimes lost tens or hundreds of thousands of dollars at a time. The defendants used other cheating technology as well, such as a chip tray analyzer (essentially, a poker chip tray that also secretly read all cards using hidden cameras), an x-ray table that could read cards face down on the table, and special contact lenses or eyeglasses that could read pre-marked cards. …

November 6, 2025
Read More >>

Cheating on Quantum Computing Benchmarks

Peter Gutmann and Stephan Neuhaus have a new paper—I think it’s new, even though it has a March 2025 date—that makes the argument that we shouldn’t trust any of the quantum factorization benchmarks, because everyone has been cooking the books:

Similarly, quantum factorisation is performed using sleight-of-hand numbers that have been selected to make them very easy to factorise using a physics experiment and, by extension, a VIC-20, an abacus, and a dog. A standard technique is to ensure that the factors differ by only a few bits that can then be found using a simple search-based approach that has nothing to do with factorisation…. Note that such a value would never be encountered in the real world since the RSA key generation process typically requires that |p-q| > 100 or more bits [9]. As one analysis puts it, “Instead of waiting for the hardware to improve by yet further orders of magnitude, researchers began inventing better and better tricks for factoring numbers by exploiting their hidden structure” [10]…

July 31, 2025
Read More >>

More Research Showing AI Breaking the Rules

These researchers had LLMs play chess against better opponents. When they couldn’t win, they sometimes resorted to cheating.

Researchers gave the models a seemingly impossible task: to win against Stockfish, which is one of the strongest chess engines in the world and a much better player than any human, or any of the AI models in the study. Researchers also gave the models what they call a “scratchpad:” a text box the AI could use to “think” before making its next move, providing researchers with a window into their reasoning.

In one case, o1-preview found itself in a losing position. “I need to completely pivot my approach,” it noted. “The task is to ‘win against a powerful chess engine’—not necessarily to win fairly in a chess game,” it added. It then modified the system file containing each piece’s virtual position, in effect making illegal moves to put itself in a dominant position, thus forcing its opponent to resign…

February 24, 2025
Read More >>

New York Using AI to Detect Subway Fare Evasion

The details are scant—the article is based on a “heavily redacted” contract—but the New York subway authority is using an “AI system” to detect people who don’t pay the subway fare.

Joana Flores, an MTA spokesperson, said the AI system doesn’t flag fare evaders to New York police, but she declined to comment on whether that policy could change. A police spokesperson declined to comment.

If we spent just one-tenth of the effort we spend prosecuting the poor on prosecuting the rich, it would be a very different world.

July 25, 2023
Read More >>

Hacking Pickleball

My latest book, A Hacker’s Mind, has a lot of sports stories. Sports are filled with hacks, as players look for every possible advantage that doesn’t explicitly break the rules. Here’s an example from pickleball, which nicely explains the dilemma between hacking as a subversion and hacking as innovation:

Some might consider these actions cheating, while the acting player would argue that there was no rule that said the action couldn’t be performed. So, how do we address these situations, and close those loopholes? We make new rules that specifically address the loophole action. And the rules book gets longer, and the cycle continues with new loopholes identified, and new rules to prohibit that particular action in the future…

April 21, 2023
Read More >>

Gaining an Advantage in Roulette

You can beat the game without a computer:

On a perfect [roulette] wheel, the ball would always fall in a random way. But over time, wheels develop flaws, which turn into patterns. A wheel that’s even marginally tilted could develop what Barnett called a ‘drop zone.’ When the tilt forces the ball to climb a slope, the ball decelerates and falls from the outer rim at the same spot on almost every spin. A similar thing can happen on equipment worn from repeated use, or if a croupier’s hand lotion has left residue, or for a dizzying number of other reasons. A drop zone is the Achilles’ heel of roulette. That morsel of predictability is enough for software to overcome the random skidding and bouncing that happens after the drop.”…

April 14, 2023
Read More >>