Side-Channel Attack against CRYSTALS-Kyber

CRYSTALS-Kyber is one of the public-key algorithms currently recommended by NIST as part of its post-quantum cryptography standardization process.

Researchers have just published a side-channel attack—using power consumption—against an implementation of the algorithm that was supposed to be resistant against that sort of attack.

The algorithm is not “broken” or “cracked”—despite headlines to the contrary—this is just a side-channel attack. What makes this work really interesting is that the researchers used a machine-learning model to train the system to exploit the side channel…

February 28, 2023
Read More >>

Putting Undetectable Backdoors in Machine Learning Models

This is really interesting research from a few months ago:

Abstract: Given the computational cost and technical expertise required to train machine learning models, users may delegate the task of learning to a service provider. Delegation of learning has clear benefits, and at the same time raises serious concerns of trust. This work studies possible abuses of power by untrusted learners.We show how a malicious learner can plant an undetectable backdoor into a classifier. On the surface, such a backdoored classifier behaves normally, but in reality, the learner maintains a mechanism for changing the classification of any input, with only a slight perturbation. Importantly, without the appropriate “backdoor key,” the mechanism is hidden and cannot be detected by any computationally-bounded observer. We demonstrate two frameworks for planting undetectable backdoors, with incomparable guarantees…

February 24, 2023
Read More >>

Bard AI Causes Google Losses of $100 Billion

By Habiba Rashid
It turns out that the intelligence in Google’s newly-announced ChatGPT rival, Bard AI, is a bit artificial at this moment.
This is a post from HackRead.com Read the original post: Bard AI Causes Google Losses of $100 Billion

February 10, 2023
Read More >>