Using Machine Learning to Detect Keystrokes

Researchers have trained a ML model to detect keystrokes by sound with 95% accuracy.

“A Practical Deep Learning-Based Acoustic Side Channel Attack on Keyboards”

Abstract: With recent developments in deep learning, the ubiquity of microphones and the rise in online services via personal devices, acoustic side channel attacks present a greater threat to keyboards than ever. This paper presents a practical implementation of a state-of-the-art deep learning model in order to classify laptop keystrokes, using a smartphone integrated microphone. When trained on keystrokes recorded by a nearby phone, the classifier achieved an accuracy of 95%, the highest accuracy seen without the use of a language model. When trained on keystrokes recorded using the video-conferencing software Zoom, an accuracy of 93% was achieved, a new best for the medium. Our results prove the practicality of these side channel attacks via off-the-shelf equipment and algorithms. We discuss a series of mitigation methods to protect users against these series of attacks…

August 9, 2023
Read More >>

Brute-Forcing a Fingerprint Reader

It’s neither hard nor expensive:

Unlike password authentication, which requires a direct match between what is inputted and what’s stored in a database, fingerprint authentication determines a match using a reference threshold. As a result, a successful fingerprint brute-force attack requires only that an inputted image provides an acceptable approximation of an image in the fingerprint database. BrutePrint manipulates the false acceptance rate (FAR) to increase the threshold so fewer approximate images are accepted.

BrutePrint acts as an adversary in the middle between the fingerprint sensor and the trusted execution environment and exploits vulnerabilities that allow for unlimited guesses…

May 30, 2023
Read More >>